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Abstract 

The difficulty of embedded system co-design is increasing rapidly 
due to the increasing complewity of mrftvidual parts, the variety of 
parts avaUabte and pressure to use multiple processors to meet per- 
formance criteria. Validation tools should contain several features 
in order to keep up with this trend, including the ahilHy to dy- 
namically change detail levels, built in protection for intellectual 
property, and support far gradual migration of functionality from 
a simulation environment to the real hardware. In this paper, we 
present our approach to the problem which includes a geographically 
distribuled co-simulation framework. This framework is a system 
of nodes such that each can include either portions of the simula- 
tor or real hardware. In support of this, the framework includes a 
mechanism for maintaining consistent versions of virtual time. 

1    Introduction 

Embedded system co-design is becoming increasingly diffi- 
cult due to a number of factors: 

• Performance criteria are harder to meet with single pro- 
cessor designs, suggesting that multi-processor designs 
should become more common. Unfortunately there are 
almost no took available that address the specific issues 
of these sorts of systems. 

• Individual components (both hardware and software) 
in an embedded systems design are theiMelves becom- 
ing more complex, and problems that occur because of 
subtle interactions may not show up until the entire 
system is assembled. 

• Many off-the-shelf solutions that could be used in an 
embedded system design are becoming available. How- 
ever, it k difficult for a designer to evaluate these in the 
context of a specific system. 

To address these issues, we identify several desirable fea- 
tures for an embedded system validation framework. First, 
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it should allow the designer to view aU parts of the system, 
including hardware and software, at several levels of detail - 
both in behavior and in communication and to dynamically 
switch between these detail levels. Second, it should facil- 
itate the inclusion of intellecttial property (IP), such as al- 
gorithms, new processors, special purpose ICs, etc. withottt 
compromising the internals of the IP. Third, it should sup- 
port geopaphically distributed design groups and as well as 
tools which may also be geographically distributed. Fourth, 
it shotdd allow the system ftmctionality to be gradually mi- 
grated to physical hardware while still allowing the entire 
system to be modeled with the newly included hardware. 
Finally, it should include debugging support for the parts 
of the system that are in hardware, the parts in software, 
the parts that are in simulation, as well as the system as a 
whole. 

Most of these have been individually addressed, for ex- 
ample. Mentor Graphics' Seamless CVE [9], Viewlogic's Ea- 
glel [5], and the previous version of Pia all allow dynamic 
changes in the detail levels. Viper technology allows the 
use of IP in simulation, through use of encrypted, unsyn- 
thesizable models. There is also research into including ac- 
tual hardware in simulation, for example, the UWTester [10], 
CATFISH [11] and Eaglel. 

In this paper, we present the approach taken in Pia, the 
co-simulator of the Chinook project [3, 12]. Pia provides 
a distributed hardware-software co-simulator and tools for 
schematic capture as well as a means of connecting these 
to synthesis tools and actual hardware. To improve the 
speed of simulation and to reduce network bandwidth, Pia 
allows for mtiltiple levels of detail and provides a mecha- 
nism for dynamically switching between them. There are 
other projects involving firauneworks for geographically iis- 
tributed electronic design, such as WELD [1], but Pia differs 
from these in that its primary focus is in faciUtating hard- 
ware/software co-design through geographically distributed 
co-simulation and in integrating remotely located hardware 
into a co-simulation environment (rather than in facilitating 
distributed design of arbitrary hardware) 

Parts vendors have already begtin to use the Internet to 
provide users with access to parts for evaluation. Intel, for 
example now has a remote evaluation facility [8] that permits 
designers to evaluate various i960 processors over the web. 
Users can enter, compile and run programs on the desired 
processor and observe the results - all over the web. 

The Pia framework pushes this concept a little farther 
and allows the user to patch web based components into a 
simulated circuit for more extensive evaluation. 
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I    The Pia system 

The Pia simulation system is a set of Pia nodes that can 
oe interconnected through a network. Each node contains a 
Qumber of sockets and each socket can facilitate a connection 
to a design tool such as a simulator or a compiler, or a de- 
vice such as a processor, an ASIC or an FPGA. Design tools 
can have built in support for Pia sockets (as do all the Chi- 
nook tools), but if not, the tools can be connected through 
a customized wrapper. The Pia system maintains consis- 
tent versions of virtual time for all simulator and hardware 
components, regardless of where they are physically located. 
Fig. 1 shows an example system with several items connected 
together. 

Fig. 1: Several Pia nodes connected through the Internet. This shows 
how simulator subsystems, user interfaces etc. are connected together 

A distinguishing feature of Pia is its abiUty to dynami- 
cally alter the level of detail represented by the simulator at 
runtime. In order for this to work, the simulator must have 
instructions (either stored in a library, or provided by the 
user) to guide it through each of the beisic communication 
actions at several levels of detail. These basic actions can 
include anyiihing from putting a byte of data on a bus to 
sending a complete packet across a network. This can be 
a big advantage when the communication occurs between 
components that are not located on the same host since it 
allows the designer to reduce the communication bandwidth 
at times when detail isn't required. Given several communi- 
cation methods for each action, Pia can dynamically switch 
between them at safe points in the execution, that is points 
in the method where the state of the interface is stable and 
consistent. 

We are in the process of building a library of standard 
communication protocols, each with several built-in detail 
levels. In the cases where the user must provide additional 
instructions for levels of detail not currently in any library, 
we allow these to be entered as a set of assertions which de- 
scribe the activating conditions, and results of any action [7]. 

2.1    Pia on a single host 

This section gives a brief overview of Pia's operation on 
a single host. It is intended to provide background for 
the distributed version of Pia, but for the complete details 
see [6]. From the designer's point a view, a system simu- 
lated through Pia consists of components, interfaces, ports 

and nets. Components are containers for some basic func- 
tionality, interfaces connect components to ports, and ports 
are interconnected through nets. A component would typi- 
cally be used to represent such things as embedded proces- 
sors running programs, ASICs, FPGAs, and so forth. Cur- 
rently in Pia, processors running software are represented by 
a component which has as its behavior the actual software 
(in Java) that would run on the embedded software. Specific 
processors are characterized by their timing characteristics 
(in the form of a basic block timing estimator) and by their 
external interfaces. Currently, the basic block timing esti- 
mation is performed by hand, but we hope to eventually take 
advantage of other research in this area. Basically, the tim- 
ing estimates are embedded in the source code, and when 
the simulator encounters one of these, it updates a version 
of virtual time. There is no reason that the component can't 
be an instruction set simulator of a particular processor, but 
we have not yet devoted any effort to either implementing 
such components or adapting an existing ISS to Pia. 

The single host version of Pia uses a two level hierarchal 
view of virtual time which includes a system time as well 
as local times for each component. When a component is 
activated, it is allowed to continue until it is ready to receive 
a value from another component. When this happens, the 
component must pause until until system time equals its 
own local time. System time is always required to be less 
than or equal to all local times, so that when a component 
is restarted, it is certain that its view of the world is up to 
date. 

5.1.1 Synchronization between components 

This technique works without any problems when the re- 
ceiving component heis distinct modes for data receipt and 
for computation. Many components fit this model, for ex- 
ample, reactive components, components that poll for new 
data, and so forth. This model can also work fairly well for 
components where the phases are less distinct (for example, 
where the data might be received during the computational 
phase through an interrupt). 

If we can statically determine which addresses in a pro- 
cessor's local memory are either written or read by inter- 
rupt handlers, we can statically mark those locations as syn- 
chronous. This means that the component will have to en- 
sure that its local time matches system time when it reads or 
writes to any of these locations (this is the same requirement 
we apply to all receives). 

If we cannot statically determine such addresses, the simu- 
lator can make the optimistic assumption and treat all mem- 
ory as safe. When the system detects a violation of this as- 
sumption it can dynamically mark the relevant addresses as 
synchronous, then rewind using Pia's checkpoint and restore 
facilities. 

5.1.2 Checkpoint and restore facilities 

The idea behind Pia's checkpoint and restore facihties is that 
components occasionally store images of their state at par- 
ticular points in the execution. On encountering consistency 
problems, the simulator can restore previous images and re- 
execute more conservatively, as we demonstrated in the dis- 
cussions on interrupts above. Although Pia's current check- 
point facility saves complete component images, we plan to 
look into incremental checkpoints at some point in the fu- 
ture. A checkpoint request does not require all components 
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to save images with the same local time, instead components 
save at the earliest local time possible after the request. 

These semantics introduce the danger of a domino effect 
hazard (13], This effect occurs it it's possible for a state 
restoral to require any component to load more than one 
checkpoint to obtain a causally consistent state. In the worst 
case, this can force all processes to roll back to their initial 
state. We avoid this by requiring each component to save a 
checkpoint before receiving any messages after a checkpoint 
request fromi the schedvder. This prevents any messages from 
the future of the checkpoint on one component from influ- 
encing the state before the checkpoint on another. 

2.1.S   Switching detail levds 

Changes in detaul levels or runleveh are triggered by any one 
of three things. First - the user may have directly altered a 
runlevel (usually through a detail level slider) second, there 
may be a switchpoint defined in the simulation run control 
file, and third, the designer may have included imperative 
runlevel switch statements in the source code. A switchpoint 
is an expression of the form S<condition>:<action> that 
tells the simulator when and how to change runlevels. An 
exaunple of a switchpoint follows: 

8I2CComponent. localTiBie>=67.0: 
I2CComponent->har<lwareLevel, 

VldCamCoiiipDnent->byteL6Tel 

This telb the simulator that as soon as it finds that 
"KCComponent" shows a localtime of 67 or later, it should 
change the runlevel of I2CComponent to "haidwareLevd" 
and the runlevel of VidCamComponent to "byteLevel". This 
particular switchpoint seems unusual since it is based only on 
BCComponent's version of virtual time. There is no way of 
knowing what time VidCamComponent will think it is when 
the switch occurs. The condition can include conjuncts and 
disjuncts of conditions across multiple components. 

2,2    Pia nodes and subsystems 

As we described it esurlier, a Pia system is a collection of dis- 
tributed Pia nodes, with interconnections being determined 
at runtime. Each Pia node contains one or more subsystems 
and each subsystem contains some fragment of the embed- 
ded system design under test. Associated with each subsys- 
tem is a scheduler object, which is primarily responsible for 
enforcing the local timing semantics. By itself, a Pia node 
with a single subsystem behaves very much like the single 
host version of Pia described earlier. Its primary duty is to 
schedule components and to ensure that the subsystem time 
is always less than or equal the local times of all components 
in the subsystem. 

Currently, components, interfaces and ports are aU 
atomic. In other words, components, interfeces and ports 
will all be contained in a single subsystem. 

&,2.1   Interconnection of subsystems 

Pia nodes sure interconnected through Java's RMI interface. 
Each node serves as both a client and a server, and handles 
all inter-node communication so that it is hidden from the 
user. Since nets are the only user object that can be split 
across subsystems, they are the only objects that require 
any special handling. A net that connects components on 
two different subsystems is spHt into two nets, one for each 

subsystem, and each net includes an extra (hidden) port that 
connects bus events to the subsystem upon which it resides. 

Between each pair of communicating subsystems is a 
channel, across which all communication occurs. Each chan- 
nel is associated with a pair of dummy components (one on 
each subsystem). Each of the hidden ports is the property 
of one of these channel components. In essence, each change 
in net's value is registered with the corresponding channel 
component, and the component is responsible for performing 
any required actions. 

Channel components are not self contained, rather, they 
are proxies for the subsystems on the opposite side of the 
channel. As such, they may be responsible for coordinat- 
ing run levels between the components, as well as insuring 
the consistency of time across channels. Channel compo- 
nents do not have a thread of their own, but instead use the 
subsystem's own thread. 

Designers wew of ^stem 

■     ■     I ■ 
Topology of system under simulrton 

l%sulssystena 

\    ■--/:- 

Pig. 2: A pair of Pia subsystems. This figure shows a channel and a 
pair of channel components which perform interfacing between nodes. 
The daric net is split between the subsystems 

Fig. 2 shows how this works. The dark net in the top 
picture is spUt across two subsystems, so hidden ports and 
channel components are introduced into the split. When 
moving a set of components from one subsystem to another, 
the split in the relevant nets can be determined by a cut 
of the component graph. Essentially, a boundary is drawn 
around all components that are moved, and any net that 
crosses this boundary is spht. If performed repeatedly and 
locally, this could force some nets to pass through subsys- 
tems which contain no components relevant to the net, so a 
global view of the system must be consulted when perform- 
ing each split. 

S.g.S   Managing virtual time between different nodes 

In general, it isn't possible to both maximize parallelism 
and guarantee continuous system consistency. The reason 
for this is that in order to guarantee system consistency, no 
subsystem is allowed to have a virtual time that is later than 
the time-stamp of a message that has not yet been dehvered 
to the appropriate component. Since messages arrive asyn- 
chronously, we don't know in advance when this may hap- 
pen, so to maintain consistency, we must be conservative 
and allow a subsystem to advance only when we aie cer- 
tain that no messages will arrive with an earher time-stamp. 
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Fig. 3: Subsyatemi must stall to maintain continuous consistency. 

On the other hand, if we want to maximize parallelism, no 
subsystem may stall unless it will receive a message with a 
time-stamp that is equal to or later than subsystem time. In 
the general case, this would require clairvoyance. 

This is true even if all components in the subsystem have 
distinct modes for computation and reception of data. Fig. 3 
shows a system in which all components in Subsystemi are 
blocked until subsystem time catches up. If this were a single 
host simulator, the subsystem would be able to advance its 
own virtual time to 20, and activate component C^. In this 
case if it does that, there may be a consistency violation 
because Subsystems may send a value to d with a time- 
stamp of, say, 15. If our goal is to maintain consistency. 
Subsystem^ can do no work until we are certain Subsystems 
will not send any messages with a time-stamp less than 20, 
even though all components in Subsystemi have a distinct 
receive phase, it still needs to wait for Subsystems- 

If there isn't much communication expected between sub- 
systems, it is often reasonable for a subsystem to continue 
as if there were no asynchronous messages, but to save state 
occasionally. If any such messages occur, then the affected 
subsystem must restore a previously saved copy of system 
state, and continue from there. 

Pia allows for both possibilities through conservative and 
optimistic channels. The rule is that a processor cannot 
proceed past the time on a conservative channel unless it is 
certain that it will not receive any messages on this channel 
with time-stamps earlier than its local time. 

2.S-3   Conservative Channels 

Before a subsystem can advance its version of virtual time, it 
must first maJce sure that no conservative channels wiU send 
it any messages with an earlier time-stamp. To ensure this, 
each subsystem can request a safe time from the subsystem 
on the far end of the channel. The safe time of component 
Ci indicates the latest time to which the opposite subsystem 
is allowed to advance to without consulting Ct again. 

This is illustrated in Fig. 4. If SSi is ready to advance its 
own subsystem time it must first get safe times from both 
SSs and SS3. Once it has these, it must compare these to 
the time value of the next event it has scheduled. If the 
event time is less than all the reported safe times, SSi is 
allowed to advance its own system time to the value of the 
event, and deUver it. 

The time a subsystem reports is essentially its own sub- 
system time with all restrictions from the opposite processor 
removed. If this were not the case, there would be deadlock, 
since no subsystem would be allowed to advance its subsys- 
tem time at all. A set of interconnected subsystems must 
make a directed graph with only simple cycles. A simple 
cycle is simply a bidirectional edge.  The reason for this is 

SS: H   1 ■             ■ 

■nil' 

■ 

f 

Fig. 4: Three subsystems are shown 

that it is computationally hard to eliminate self-restriction 
on the fly for general graphs. 

2.2.4 Optimistic Channels 

Subsystems hnked by optimistic channels are not restricted 
from updating their virtual time beyond the safe time of the 
subsystem on the opposite side of the channel. For exam- 
ple, if chsmnel C12 were an optimistic channel, S5i would 
only need to consult 553 before advancing local time. This 
requires each subsystem to occasionally save state so that it 
can fully recover if a consistency error occurs. This is usually 
covered by the interrupt checkpoint and restore mechanism, 
so the only impact could be more expensive restores if opti- 
mistic channels are poorly placed. 

2.5.5 Managing checkpoints in distributed Pia 

As we mentioned above, a checkpoint and restore system 
that does not require all components to save state simulta- 
neously risks a domino effect. Although this is straight for- 
ward for single host Pia, we need to address the issue again 
when we distribute the simulator. This is because there may 
be some delay between the time when the scheduler requests 
a checkpoint, and all components receive the request. 

Since all channels between subsystems are FIFO chan- 
nels, we can solve this problem with the Chandy-Lamport 
algorithm [2]. After a subsystem receives (or generates) a 
checkpoint request, it performs a local checkpoint and trcins- 
mits a mark on all of its outgoing channels. Upon receipt 
of a mairk, a subsystem immediately performs a local check- 
point, before receiving anything else on that same channel. 
Following this, before transmitting ansrthing else on a par- 
ticular outgoing channel, the subsystem sends a mark. To 
ensure that each subsystem performs the local checkpoint 
only once per request, each mark contains an identifier, and 
that identifier is also sent with each mark generated in re- 
sponse, such that a subsystem can ignore marks with that 
have the same identifier as checkpoints already performed. 

143 



2.3    Connecting Pia to real hardware 3.2   The Pia class loader 

Adding real hardware to a simulation requires a hard- 
ware/software stub to be attached to the hardware through 
some means. One possibiUty is to use a DEC Pamette 
board [4] to provide the hardware side of this, and the soft- 
ware side could be written using the Pamette control library. 
This hardware/software stub serves to match semantics be- 
tween the hardware and the simulator, and must provide 
certain functionaUty: 

• It must be able to set and read time on the hardware. 
The setting of time could be implemented as software 
translation of asctual time given by the hardware. 

• It must be able to either stall or otherwise idle the 
hardware. 

• It must be able to buffer interrupts generated by hard- 
ware and pass these up to the simulator. 

All of these functions could be implemented in software if 
the hardware allows the user to start the clock and stop it 
after a measxired number of ticks, but this is likely to be the 
case only if the hardware was designed with connection to 
Pia in mind. 

Connecting Pia to an actual embedded processor can be 
greatly faciUtated by small server which resides on the em- 
bedded system. If the system already includes a Java virtual 
machine, then this is fairly straightforward and the stub can 
allow migration of objects from a simulated component the 
actual component. 

3    Implementation in Java 

There are a number of reasons that caused us to choose Java 
as the implementation language for Pia including Java's built 
in support for concurrent threads, distribution, and flexible 
loading of modules. 

3.1    imposing the Pia scheduling semantics on the Java 
VM 

Since Java is a threawied language, it would seem natural 
to use the Java VM's thread package to provide for concur- 
rence between components. In general, however, this would 
mean adopting the scheduling semantics of the VM. Since 
the scheduler offers no scheduling guarantees, (if there are 
two runnable threads with different priorities, the scheduler 
will occasionally run the thread with the lower priority) they 
are inappropriate for use in Pia. 

An EJtemative to this is to essentially define a scheduler 
class that chooses which thread to run, and then tricks the 
VM scheduler into running that thread. There are a couple 
of ways we can do this, both based on ensuring that that 
the VM scheduler finds only one rimnable thread at a time. 
First of all, we can have the scheduler suspend all threads, 
and resume only the one that should be running. The other 
way is to have all the threads queue up on mutexes and 
have the scheduler signal the one it wants to run. The latter 
method is the one used in Pia although the former should 
be equivalent. 

The class loader used in Pia is designed to allow a user to 
recompile and reload a component without having to restart 
the simulator. Pia's class loader is able to load compo- 
nents on demand from arbitrary URLs on the Internet. If 
a class cannot be found through the custom channels, Pia 
iises Java's built in class loader. 

4    An example embedded system 

We now introduce an example system which we will use to 
further illustrate the concepts of this paper, and to obtain 
some performance metrics. The example we will use is the 
"WubbleU" application, a suggested benchmark for embed- 
ded system design tools [14]. WubbleU is essentiaEy a hand 
held Web Browser, or, more accurately, a Web Browser that 
consists of a hand held unit and a wireless connection to 
a dedicated server. The specification allows for a cert^n 
amount of flexibiUty in assigning tasks to the server or hand- 
held unit. In fact, that is something a designer may want 
play with, given available parts and software modules. 

An implementation of WubbleU can contain several forms 
of Intellectual .Property. For example there may be special 
integrated circuits (GSM chips, JPEG chips), software (Java 
VMs, Handwriting recognition software), as weE as various 
compression and communication algorithnw. Also, it is likely 
that some parts of the hardware will be ready before oth- 
ers and possible that a designer would Uke to try various 
synthesis tools. 

Fig. 6:  A communication flow diagram for the WubbleU Ijandljeld 
web browser 

Pig. 5 shows a high level conuaunication graph of the mod- 
ules in WubbleU. The nodes in this graph may be imple- 
mented in either hardware or software. We will focus on an 
a particular implementation that includes a simple cellular 
connection to a server which coimects to the Internet, and 
most of the ftmctionality is on the handheld unit. This is 
not necessarily the best implementation, but it works for the 
purposes in this paper. 

The cellular coimection is controlled by an ASIC which 
transfers packets to the system through DMA. This chip is 
our candidate for remote operation. Fig. 6 shows a blo<i di- 
agram of this circuit, as well as the topology of this circuit on 
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Location Detail level simulation time 
N/A HotJava .54 seconds 
loc£d word passage 130.2 seconds 
local packet passage 43.1 seconds 

remote word passage 604 seconds 
remote packet passage 80.3 seconds 

Tab. 1:  Time and simulation overhead on Beveral configurations of 
the WubbleU example 

the simulator. In this architecture, all processes are mapped 
to the processor, with the exception of whe network interface 
which was mapped to the cellular communication chip. In 
this case, both Pia nodes were running on Linux/Pentium 
Pro 200MHz work stations, both on the same subnet. Ide- 
ally, we would like to perform this experiment using the real 
hardware, but we are do not yet have any functional hard- 
ware servers. Besides, the main point of this experiment is 
to show that even with reduction in simulation performance 
introduced by the Internet we can still obtain reasonable 
overall performance by changing abstraction levels for this 
link. 

f iili«>i(w ImiHifciw 

Fig. 6: A possible architecture for the WubbleU system, and it's sim- 
ulation topology 

The test performed is the loading of the Pia homepage 
(http://www.cs.washington.edu/homes/hineskj/Pia.html) 
which contains approximately 66KB of data, including 
graphics. For comparison, we also timed loading this page 
with Sun's HotJava browser which we use as a rough 
reference for estimating simulation overhead in each case. 
The transfer modes that we used for each of the simulation 
tests were word passage where individual four byte words 
were passed across the network, and packet passage where 
the data was sent across the channel in 1KB packets. These 
same modes were used for local testing, where all parts of 
the simulation are in a single subsystem, and the results are 
all shown in Table 1. 

We notice that there is a large performance hit in all the 
simulation, but that is to be expected. The loading time un- 
der the remote packet passing abstraction level is actually 
quite reasonable, and is actually fast enough to allow the de- 

signer to play with the simulated hardware. The reason that 
the performance improvement is much less drsimatic when 
all components are simulated locally is because communi- 
cation between the other components is still rendered with 
a high level of detail. It's possible, given specification style 
and detail level, that this local performance could approach 
that of HotJava. 

5    Conclusions and Future work 

We believe that a geographically distributed environment for 
coordination design effort and validation of embedded sys- 
tems is an important addition to the designers repertoire of 
tools. Although this solution could conceivably cause prob- 
lems with performance, we showed how the principles of se- 
lective focus introduced in [6] cein be used to offset this. 

Current work is in the extension of Pia to include a de- 
bugger and changing the checkpoint mechanism to use in- 
cremental rather than total checkpoints. Additional current 
and future work involves setting up Pia socket versions of 
hardware servers, and building additional examples. 
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